skip to main content


Search for: All records

Creators/Authors contains: "Iannucci, Frances M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Kuparuk River, located on Alaska's North Slope, is one of the most studied rivers in the Arctic. For nearly 40 seasons, physical, chemical, and biological parameters have been monitored continuously in a 5 km, 4th‐order reach of the river during the short summer season when there is flow in this river. Flow decreases as the tundra begins to refreeze in the late autumn and these streams normally remain frozen until the spring freshet. The monitoring program has supported a 34‐year phosphorus enrichment experiment conducted by the Arctic Long Term Ecological Research (LTER) program. Enrichment with phosphorus dramatically changed the structure and function of the primary producer community in the fertilized reach, with cascading effects in higher trophic levels. The datasets generated by this experiment have revealed significant increases in flow‐weighted mean concentrations of nitrate and significant decreases in flow‐weighted mean concentrations of dissolved organic N and P over time. In this paper, we present an overview of the nutrient concentration, discharge, macroinvertebrate, and Arctic grayling population datasets we have collected. The purposes of these datasets are to track changes resulting from the enrichment experiment, support ancillary research on responses of an Arctic stream to climate warming and permafrost thaw, and to provide input and validation data for models to predict future changes in Arctic streams.

     
    more » « less
  2. Abstract

    The climate of the Arctic region is changing rapidly, with important implications for permafrost, vegetation communities, and transport of solutes by streams and rivers to the Arctic Ocean. While research on Arctic streams and rivers has accelerated in recent years, long‐term records are relatively rare compared to temperate and tropical regions. We began monitoring the upper Kuparuk River in 1983 as part of a long‐term, low‐level, whole‐season phosphorus enrichment of a 4–6 km experimental reach, which was subsequently incorporated into the Arctic Long‐Term Ecological Research (Arctic LTER) programme. The phosphorus enrichment phase of the Upper Kuparuk River Experiment (UKRE) ran continuously for 34 seasons, fundamentally altering the community structure and function of the Fertilized reach. The objectives of this paper are to (a) update observations of the environmental conditions in the Kuparuk River region as revealed by long‐term, catchment‐level monitoring, (b) compare long‐term trends in biogeochemical characteristics of phosphorus‐enriched and reference reaches of the Kuparuk River, and (c) report results from a new ‘ReFertilization’ experiment. During the UKRE, temperature and discharge did not change significantly, though precipitation increased slightly. However, the UKRE revealed unexpected community state changes attributable to phosphorus enrichment (e.g., appearance of colonizing bryophytes) and long‐term legacy effects of these state changes after cessation of the phosphorus enrichment. The UKRE also revealed important biogeochemical trends (e.g., increased nitrate flux and benthic C:N, decreased DOP flux). The decrease in DOP is particularly notable in that this may be a pan‐Arctic trend related to permafrost thaw and exposure to new sources of iron that reduce phosphorus mobility to streams and rivers. The trends revealed by the UKRE would have been difficult or impossible to identify without long‐term, catchment level research and may have important influences on connections between Arctic headwater catchments and downstream receiving waters, including the Arctic Ocean.

     
    more » « less